Objective Type

Roll No. __ (To be filled in by the candidate) (Academic Sessions 2020 - 2022 & 2023 - 2025)

Business Mathematics 224 - 1st Annual - (Inter Part - I) Time : 15 Minutes

Q. Paper (Objective Type)

Paper Code = 6642

Maximum Marks: 10

NOTE: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting

	or filling two or more circles will result in ze	ro mark in that question	in.
U			
1	The ratio between 1.5 cm and 4.5 cm is:		
	(A) 2:5 (B) 3:1	(C) 1:3	(D) 2:3
2	If $40:30:20:x$ then $x=$	-	
	(A) 15 (B) 10	(C) 20	(D) 25
3	The billiple interest on a roan of Residuo for 2 years at 7 /6 is.		
_	(A) Rs.22 (B) Rs.32	(C) Rs.42	(D) Rs.52
4	(1) La C then (1) La.		
-	(A) 7 (B) 9	(C) 8	(D) 6
5	_ then x		
	(A) 4 (B) 5	(C) 6	(D) 7
6 A quadratic equation is also called an equation of d			
	(A) 1 (B) 2	(C) 3	(D) 4
7	8 in binary system is:	A Tribuil of the appeals	rifiniariinkaski edi
	(A) (1000) ₂ (B) (1001) ₂	(C) (1010) ₂	$(D)(1011)_2$
8	(1010) ₂ in decimal form is:		
	(A) 10 (B) 12	(C) 8	(D) 14
9	(AB)' is equal to:	to the file of the party	
_	(A) $A^t B^t$ (B) $B^t A^t$	(C) AB ^t	(D) A ^t B
10	The order of the matrix [2 5 8] is:		THE RESERVE
	(A) 3×3 (B) 1×1	(C) 3×1	(D) 1×3
100	wers:		apply restricted
1.	C 2. A 3. C 4. B 5. D	6. B 7. A	8. A 9. B 10. D

Subjective Type

(To be filled in by the candidate) (Academic Sessions 2020 - 2022 & 2023 - 2025) BUSINESS MATHEMATICS 224 - 1st Annual - (INTER PART - I) Time Allowed: 1:45 hours (Essay Type) SECTION - I

Write short answers to any SIX (6) questions:

Maximum Marks: 40 12

Find the ratio between one hour and 45 minutes.

Ratio between one hour and 45 minutes. 1 hour = 60 minutes

60:45

4:3

Define inverse proportion.

Ans. If two quantities are so related that an increase in one causes a corresponding decrease in the other or vice versa, is called inverse or indirect proportion.

(iii) 270 is what % of 900?

Sol. Let the percentage is x. So, $270 = 900 \times \frac{x}{100}$

$$\frac{270}{900} = \frac{x}{100} \implies 0.3 = \frac{x}{100} \implies x = (0.3)(100) = 30\%$$

Find the simple interest on Rs.15000 for one and a half year at 5% annually. (iv) Sol. Given that .

P = Rs. 15000
N = 1.5 years
1 = 5%
=
$$\frac{5}{100}$$
 = 0.05 annually

As we know

Simple interest =
$$S.I = PIN$$

= (15000) (0.05) (1.5)
 $S.I = Rs. 1125$

Define an Annuity Certain. (v)

Ans. Annuity certain is an investment that provides a series of payments for a set period to a person or the persons beneficiary or estate.

(vi) Solve
$$4x - 3 = 2x + 7$$

Sol.
$$4x-3=2x+7 \implies 4x-2x=7+3$$

$$2x = 10 \implies x = \frac{10}{2} = 5$$

(vii) Solve the equation 4(3y-9) = 7(2-5y) + 22y

Sol.
$$4 (3y-9) = 7 (2-5y) + 22y$$
$$12y-36 = 14-35y+22y$$
$$12y-36 = 14-13y$$
$$12y+13y = 14+36$$
$$25y = 50$$

$$y = 2$$

(viii) Solve the equation $5x^2 + 3x = 0$

Sol.

$$5x^2 + 3x = 0 \Rightarrow x (5x + 3) = 0$$

$$x = 0, 5x + 3 = 0$$

$$5x = -3$$

$$x = -\frac{3}{5}$$

$$SS = \left\{0, -\frac{3}{5}\right\}$$

Write down the quadratic formula.

is called quadratic formula. Ans. The solution set

03 Write short answers to any SIX (6) questions:

(i) If
$$f(x) = 4x - 3$$
, then find $f(0)$ and $f(1)$.

(i) If
$$f(x) = 4x - 3$$
, then find $f(0)$ and $f(1)$.
Sol.
$$f(x) = 4x - 3$$

$$put x = 0$$

$$f(0) = 4(0) - = -3$$

$$put x = 1$$

$$f(1) = 4(1) - 3 = 4 - 3$$

$$f(1) = 1$$
(ii) Draw the graph of $y = 2x - 5$

(ii) Draw the graph of y = 2x - 5Given y = 2x - 5

X-intercept
put y = 0

$$0 = 2x - 5$$

 $x = \frac{5}{2}$
 $y = 2(0) - 5$
 $y = -5$
 $y = (0, -5)$

12

(iii) Find the value in decimal system $(945)_{10} + (111)_2 = ?$

Sol.
$$(945)_{10} + (111)$$

As,

$$(111)_2 = 1 \times 2 + 1 \times 2 + 1 \times 2$$

$$1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

$$= 1 \times 4 + 1 \times 2 + 1 \times 1$$

$$= 4 + 2 + 1$$

$$= 7$$

Now

$$(945)_{10} + (111)_2 = 945 + 7$$

= 952

(iv) Evaluate $(1101)_2 - (111)_2 = ?$

Sol.
$$(1101)_2 - (111)_2$$
 $(1 1 0 1)_2$
Thus $(1101)_2 - (111)_2 = (110)_2$ $(1 1 0)_2$
 $(1 1 0 1)_2$
 $(1 1 0)_2$

(v) Convert 37 into binary number system.

$$(37)_{10} = (100101)_2$$

(vi) Find AB if
$$A = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$
 and $B = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$

Sol. Given that

$$A = \begin{bmatrix} 1 \\ 7 \end{bmatrix} \text{ and } B = \begin{bmatrix} 7 & 1 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 \\ 7 \end{bmatrix} \begin{bmatrix} 7 & 1 \end{bmatrix} = \begin{bmatrix} 1 \times 7 & 1 \times 1 \\ 7 \times 7 & 7 \times 1 \end{bmatrix}$$

$$AB = \begin{bmatrix} 7 & 1 \\ 49 & 7 \end{bmatrix}$$

(vii) Define diagonal matrix, give an example.

Ans. A square matrix in which all other elements except the principal diagonal elements are zero and there is atleast one element in the principal diagonal which is non-zero is called diagonal matrix.

For example:

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$$
 is a diagonal matrix.

(viii) For what value of x the matrix $\begin{bmatrix} 2x & -4 \\ -1 & 2 \end{bmatrix}$ will be singular.

Sol. Let
$$A = \begin{bmatrix} 2x & -4 \\ -1 & 2 \end{bmatrix}$$

As A is singular

So
$$|A| = 0 \implies \begin{bmatrix} 2x & -4 \\ -1 & 2 \end{bmatrix} = 0$$

(2) $(2x) - (-1)(-4) = 0$
 $4x - 4 = 0$

$$4x = 4 \Rightarrow x = 1$$

So for x = 1, the given matrix is singular.

Show that the inverse of matrix $\begin{bmatrix} 3 \\ 7 \end{bmatrix}$ 6 does not exist.

Sol. Let
$$A = \begin{bmatrix} 3 & 6 \\ 7 & 14 \end{bmatrix} \Rightarrow |A| = \begin{bmatrix} 3 & 6 \\ 7 & 14 \end{bmatrix} = 42 - 42 = 0$$

As A is singular so inverse of A not exists.

SECTION . II

Note: Attempt any TWO questions.

 $2 \times 8 = 16$

(a) A bus travels 200 km in 3 hours. How much time is needed for a journey of 480 km? 4 Sol. Let x be required time to travel 480 km.

Distance (km)	Time (hours)		
200	1 3		
↓ 480	↓ x		

By proportion method

$$\frac{200}{480} = \frac{3}{x} \implies x = \frac{3 \times 480}{200}$$

So, 7.2 hour be x the required time.

The amount of simple interest for Rs. 15,000 for 2 years is Rs. 1000. Find the rate of interest.

Simple Interest =
$$S.I = Rs. 1000$$

Number of years
$$= N = 2$$

Let I be the required rate interest using

$$SI = PIN$$

Putting values
$$1000 = 15000 \text{ (I) (2)} = 30000 \text{ I}$$

$$\frac{1000}{30000} = I \Rightarrow I = 0.0333$$

$$I = 0.0333 \times 100\% = 3.33\%$$

(3) Draw a graph defined by the function y = 2x + 3

Sol. y = 2x + 3

As the given function is a linear function and its graph will be a straight line, so we can draw that straight line just by taking two points only. The most suitable two points are the intercepts forms.

X-intercept
put y = 0 in (i)

$$0 = 2x + 3$$

 $x = -\frac{3}{2}$
 $\Rightarrow \left(-\frac{3}{2}, 0\right)$
Y-intercept
put x = 0 in (i)
 $y = 2(0) + 3$
 $y = 3$
 $\Rightarrow (0, 3)$

Graph:

(b) Solve
$$8x^2 - 14x - 15 = 0$$
 by the quadratic equation.

$$8x^2 - 14x - 15 = 0$$

$$a = 8$$
, $b = -14$, $= c = -15$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2(a)}$$

$$x = \frac{-(-14) \pm \sqrt{(-14)^2 - 4(8)(-15)}}{2(8)}$$

$$=\frac{14\pm\sqrt{196+480}}{16}$$

$$=\frac{16}{16} = \frac{14 \pm 26}{16}$$

$$x = \frac{14+26}{16}$$
 ; $x = \frac{1}{16}$

$$x = \frac{40}{16}$$
 ;

$$x = \frac{5}{2}$$
 ; $x = \frac{-3}{4}$

S.S =
$$\left\{-\frac{3}{4}, \frac{5}{2}\right\}$$

(a) Solve the following system of liner equations by Cramer's rule 2x-y=1

Sol. Given

$$3x + 2y = 5$$
$$2x - y = 1$$

The matrix form is

$$\begin{bmatrix} 3 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

Let

$$A = \begin{bmatrix} 3 & 2 \\ 2 & -1 \end{bmatrix}$$

Then by cramer's rule

$$x = \frac{|A_x|}{|A|} = \frac{\begin{vmatrix} 5 & 2 \\ 1 & -1 \end{vmatrix}}{\begin{vmatrix} 3 & 2 \\ 2 & -1 \end{vmatrix}} = \frac{-5 - 2}{-3 - 4} = \frac{-7}{-7} = 1 \implies x = 1$$

And

$$y = \frac{|A_y|}{|A|} = \frac{\begin{vmatrix} 3 & 5 \\ 2 & 1 \end{vmatrix}}{\begin{vmatrix} 3 & 2 \\ 2 & -1 \end{vmatrix}}$$

$$=\frac{3-10}{-3-4} = \frac{-7}{-7} = 1 \implies y = 1$$

Evaluate: $\{(1011)_2 + (1101)_2\} + (1001)_2$ (b)

Sol.
$$\{(1011)_2 + (1101)_2\} + (1001)_2$$
 $(1^1)_2 + (1100)_2 + (1001)_2$

$$= (11000)_2 + (1001)_2$$
$$= (100001)_2$$

$$\frac{+}{(1 \quad 1 \quad 0 \quad 1)_2}$$