Sahiwal Board

2023

		0	bjecti	ve T	ype	×		remaily		
	Roll No.	111			1		(To be	filled in l	y the car	ndidata
	NESS MATHEMATICS	I	I.S.S.C	(11th)	1st_/	1-20	23	Time:	15 Min	utes
apei	r: I	. *					3.1	Marks		
			aper Co		6	6	4	1,		
ote:	You have four choices for each	ch obje	ctive typ	e que	stion	as /	A, B, C	and D. The	choice v	vhich voi
	unit is correct; till that circle	in fron	t of that	questi	on nu	ımbe	r in you	i answer bi	ook. Use	marker o
	pen to fill the circles. Cutting of	or filling	up two	or mo	re cir	cles	will resu	ilt no mark.		
II			SECTI	ON	<u>- A</u>		31 -	1 1 1 1	21	ail.
Sr.	Quest	ions			F)		A	В	C	D
1.	The ration between 2.5 kg a	nd 4.5	kg is:	1. 1.	-131		2:5	5:9	9:5	2:3
2.	Rs. 250 is what percent of R	s. 100	0?	-			1.5%	2.5%	3.5%	25%
2 1	The formula for finding rat		L. Con	+10	n.	-01	I×100	1×100	P×100	T×100
	To make for midnig rate	C /0.	# 1			1	P	$P \times T$	$\frac{1 \times 100}{1 \times T}$	$\frac{1}{P \times 1}$
	If $f(x) = \sqrt{x+9}$, then $f(x^2 - 9)$)=					x+9	x2 - 9	X2	X
5.	If $x-3 = 2x + 9$, then	1, 8				1	x = -12	x = 12	x = 6	x = -6
6.	The solution set of $3x^2 + 4x$	+ 1 = (0 is:				$\left\{\frac{1}{3},1\right\}$	$\left\{\frac{-1}{3},1\right\}$	$\left\{\frac{-1}{3},-1\right\}$	$\left\{\frac{1}{3},-1\right\}$
7.	Conversion of 4 into binary			N.			(10)2	(11)2	(101)2	(100)2
8.	(10000)2 in deimal system is				1.0		18	20	17	16
9.	If order of matrix A is 2 × 3	and o	order of	matr	x.B.	is	2×2	2×4	3×3	3×4
Ž,	3×4, then order of AB is:			Fines	17	0.3	ri ki	24	3^3	3^4
10.	If $A = \begin{bmatrix} 8 & 9 \\ 12 & 15 \end{bmatrix}$, then order	of A-1	is:			4(1)	1×1	2×3	2×2	3×3
Ans	wers:	_	1		_	10	21111	1 = 2/001		
1.	B 2. D 3. B 4.	D	5. A	6	D	1-	-	71 had	Ullia se	
	1 - 1 - 1 - 0 -			6.			D	8. D 9). B	10. C
	Roll No.	17	Subjec	tive	Тур	е			di.	
DI							(To be	filled in l	y the ca	ndidate
	SINESS MATHEMATICS		H.S	S.S.C	(11 th)1st	-A-2023		me: 1.4	
	per: I							44	arks: 40	
1101	Section B is compulsory.	Attem	pt any T	wo Qı	estic	ons	rom Se	ction C.	10	
02			SECT	NOL	- B	1 2	12/1	111		
(i)	,	iy Six	parts:					V7+Z	(6	6×2=1
Sol.	Distribute Rs. 15000 in th						e la init		4	
	Siven		= 3:2				- 25	= lf +.v	ngunita	e dec
	Sum O	ratio	= 3 + 2 =	= 5			. Al	W That		
	Share of 1st p	erson	$=\frac{15000}{5}$	-×3=	300	0×3	3 = 9000) ()	ex (in	an"
	Share of 2nd p	erson	= 15000	$\frac{0}{-} \times 2 =$	= 300	00×	2 = 600	0) - 77 - 60) ·	

Find the missing term from the proportion 2:3 :: :15

(ii) Let x be the missing term then

Product of mean = Product of extreme

$$3x = 30$$

$$x = 10$$

(iii) A dealer bought a bicycle for Rs. 15500 and sold for Rs. 16740. Find profit percentage.

Purchasing price = 15500

Profit =
$$16740 - 15500 = 1240$$

Profit percentage =
$$\left(\frac{\text{Profit}}{\text{Purchase}} \times 100\right)\% = \left(\frac{1240}{15500} \times 100\right)\% = 8\%$$

(iv) Find the simple interest on Rs. 5000 invested for 6 months at the rate 8% per annum.

Interest rate (I) =
$$8\% = 0.09$$

Time = N = 2 month =
$$\frac{6}{12}$$
 = 0.5

$$S.I = PIN = (5000)(0.09)(0.5) = 225$$

(v) Define the term 'ordinary annuity'.

Ans. If every payment is made at end of each payment period and continue for a definite period is called ordinary annuity. It can be calculate as:

$$S = R \left[\frac{(1+i)^n - 1}{i} \right]$$

(vi) Solve 4(x-7) = 3(2x+1)-5.

Sol.

$$4(x-7) = 3(2x+1) - 5$$

$$4x - 28 = 6x + 3 - 5$$

$$4x - 28 = 6x - 2$$

$$4x - 6x = -2 + 28$$

$$-2x = 26$$

$$-x = 13$$

$$x = -13$$

(vii) Find two consecutive integers whose sum is 29.

Sol. Let x and x + 1 be the two integers.

$$x + x + 1 = 29$$

$$2x + 1 = 29$$

$$2x = 29 - 1$$

$$2x = 28$$

$$x = 14$$

$$\Rightarrow$$
 x = 14 and x + 1 = 14 + 1 = 15

(viii) Solve $4x^2 - 11x + 6 = 0$ by completing square.

Sol.

$$4x^2 - 11x + 6 = 0$$

Divide b.s by 4

$$\frac{4x^2}{4} - \frac{11}{4}x + \frac{6}{4} = 0$$

$$x^2 - \frac{11}{4}x = -\frac{3}{2}$$

Adding
$$\left(\frac{11}{3}\right)^2$$
 on bs

$$x^{2} - \frac{11}{4}(x) + \left(\frac{11}{8}\right)^{2} = -\frac{3}{2} + \left(\frac{11}{8}\right)^{2}$$
$$\left(x - \frac{11}{8}\right)^{2} = -\frac{3}{2} + \frac{121}{64} = \frac{-96 + 121}{64} = \frac{25}{64}$$

Taking square root on bs

$$x - \frac{11}{8} = \pm \frac{5}{8}$$

$$x - \frac{11}{8} = \frac{5}{8}$$

$$x = \frac{5}{8} + \frac{11}{8}$$

$$x = \frac{5}{8} + \frac{11}{8}$$

$$x = \frac{5}{8} + \frac{11}{8}$$

$$x = \frac{5 + 11}{8} = \frac{16}{8}$$

$$x = 2$$

$$x = \frac{3}{4}$$

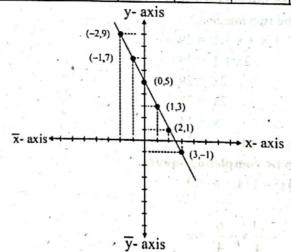
(ix) Discuss the nature of the roots of x^2 - 5x + 6 = 0

Sol. Here
$$a = 1$$
, $b = -5$, $c = 6$

Disc = $b^2 - 4ac = (-5)^2 - 4(1)(6) = 25 - 24 = 1$

Roots will be rational (real) and unequal.

Write short answers to any Six parts:


(6×2=12

before the term 'ordinary annuity'

(i) Define profit function.

Ans. The profit function represents the difference between the total revenue a business receive from selling its good or services and the total costs incurs.

(ii) Sketch the graph of 4x+2y=10

(iii) Subtract (1101)₂ from (10011)₂.

Sol.

				0		1	1	1)2
1	M. Alta	1-1 99	isa was		×	(1	1	1)2
	•		11	0^2	0^2	1'	1	1
	Y	11	0	0	1	1	1	×
	11/0	0	0	1	1	1	×	×
(1	0	0	0	1	0	0	0	1)2

(v) Convert (10110011)2 into decimal system.

$$= 1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

$$= 1 \times 128 + 0 + 1 \times 32 + 1 \times 16 + 0 + 0 + 1 \times 2 + 1 \times 1$$

$$= 128 + 0 + 32 + 16 + 0 + 0 + 2 + 1 = 179$$

(vi) If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
; $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$, then find AB.

Sol.
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$

$$AB = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 \times 1 + 2 \times 3 + 3 \times 5 & 1 \times 2 + 2 \times 4 + 3 \times 6 \\ 4 \times 1 + 5 \times 3 + 6 \times 5 & 4 \times 2 + 5 \times 4 + 6 \times 6 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 + 6 + 15 & 2 + 8 + 18 \\ 4 + 15 + 30 & 8 + 20 + 36 \end{bmatrix} = \begin{bmatrix} 22 & 28 \\ 49 & 64 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1+6+15 & 2+8+18 \\ 4+15+30 & 8+20+36 \end{bmatrix} = \begin{bmatrix} 22 & 28 \\ 49 & 64 \end{bmatrix}$$

(vii) If
$$A = \begin{bmatrix} 2 & 5 \\ x & -10 \end{bmatrix}$$
 is a singular matrix, then find the value of x.

$$A = \begin{bmatrix} 2 & 5 \\ x & -10 \end{bmatrix}$$

As A is singular matrix

So,
$$|A| = 0$$

 $\begin{vmatrix} 2 & 5 \\ x & -10 \end{vmatrix} = 0$
 $-20 - 5x = 0$
 $-5x = 20$

(viii) Define skew symmetric matrix

Ans. A square matrix "A" will be skew symmetric matrix if A

(ix) If
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}$$
; find the value of $|2A|$

Sol.
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}$$

$$2A = 2\begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 8 & 18 \end{bmatrix}$$

$$|2A| = \begin{vmatrix} 2 & 4 \\ 8 & 18 \end{vmatrix} = 36 - 32 = 4$$

SECTION - C

NOCE Attempt any Two questions. Each question carries 4+4=8 marks.

 $(2 \times 8 = 16)$

(a) If 15 workers paint 5 houses in a day, then how many workers are required to paint 3 houses in a day?

Sol. Place the given quantities in the form of a table,

Workers		Houses		
↑ 15		1 5		
x(say)	2003 - 3%	3		

By proportion method

$$x:15::3:5$$

$$\frac{x}{15} = \frac{3}{5}$$

Tacking cross multiplication

$$(x)(5) = (15)(3)$$

 $5x = 45$
 $x = 9$

Thus 9 workers are required to point 3 houses in a day.

(b) Find the compound amount at the end of one year if Rs. 10,000 are invested at 10% interest compounded annually.

Sol.
$$P = 1,0000$$

$$r = 10\% \text{ annually}$$

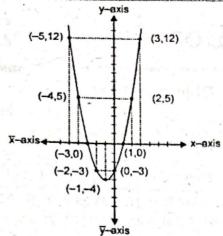
$$= \frac{10}{100} = 0.1 \text{ annually}$$

$$n = 1 \text{ year}$$

$$As \cdot A = P(1+r)^n$$

$$A = 10,000 (1+0.1)^1$$

$$= 10,000 (1.1)$$


$$= 10,000 (1.1)$$

$$A = 11000$$

Sol. Given function is

Let
$$y = f(x)$$

 $\Rightarrow y = f(x) = x^2 + 2x - 3$
 $f(x) = x^2 + 2x - 3$
 $\Rightarrow f(3) = (3)^2 + 2(3) - 3 = 9 + 6 - 3 = 12$
 $f(2) = (2)^2 + 2(2) - 3 = 4 + 4 - 3 = 5$
 $f(1) = (1)^2 + 2(1) - 3 = 1 + 2 - 3 = 0$
 $f(0) = (0)^2 + 2(0) - 3 = -3$
 $f(-1) = (-1)^2 + 2(-1) - 3 = 1 - 2 - 3 = -4$
 $f(-2) = (-2)^2 + 2(-2) - 3 = 4 - 4 - 3 = -3$
 $f(-3) = (-3)^2 + 2(-3) - 3 = 9 - 6 - 3 = 0$
 $f(-4) = (-4)^2 + 2(-4) - 3 = 16 - 8 - 3 = 5$
 $f(-5) = (-5)^2 + 2(-5) - 3 = 25 - 10 - 3 = 12$

(b) Solve the equations:

$$2x - y = 11$$

$$x + 4 = 1$$

Sol.

$$2x - y = 11$$
 (i)
 $x + 4 = 1$ (ii)

From (ii)

$$x=-4+1 = -3$$

Put $x = -3$ in (i)

$$2(-3) - y = 11$$

$$-6-y = 11$$

$$-6-11 = y \Rightarrow y = -17$$

Sol.

$$A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2+2 & -1+2 \\ 8-2 & -4-3 \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 5 & -7 \end{bmatrix}$$

$$(AB)' = \begin{bmatrix} 4 & 1 \\ 5 & -7 \end{bmatrix}' = \begin{bmatrix} 4 & 5 \\ 1 & -7 \end{bmatrix}$$
(i)

Now

$$A^{t} = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}^{t} = \begin{bmatrix} 1 & 4 \\ 2 & -3 \end{bmatrix}$$

And

$$\mathbf{B}^{\mathsf{t}} = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}^{\mathsf{t}} = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$$

=

$$\mathbf{B}^{t}\mathbf{A}^{t} = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & -3 \end{bmatrix}$$

$$= \begin{bmatrix} 2+2 & 8-3 \\ -1+2 & -4-3 \end{bmatrix} = \begin{bmatrix} 4 & 5 \\ 1 & -7 \end{bmatrix}$$
 (ii)

From (i) and (ii)

$$(AB)^t = B^t A^t$$

(b) Multiply (11011)₂ and (101)₂ Sol. Multiply (11011)₂ and (101)₂

ши	(101)	2	,	(1	1	0	1	1)2
		í,			×	(1	* 0.	1)2
			,	11	1	0	1	1
			01	0	0	0	0	×
73		11	1	0	1	1	, `×	×
. =	7	0	0	0	0	1-1-	<u></u>	1),

3